数学之美番外篇:平凡而又神奇的贝叶斯方法
贝叶斯公式
贝叶斯公式是怎么来的?
我们还是使用 wikipedia 上的一个例子:
一所学校里面有 60% 的男生,40% 的女生。男生总是穿长裤,女生则一半穿长裤一半穿裙子。有了这些信息之后我们可以容易地计算“随机选取一个学生,他(她)穿长裤的概率和穿裙子的概率是多大”,这个就是前面说的“正向概率”的计算。然而,假设你走在校园中,迎面走来一个穿长裤的学生(很不幸的是你高度近似,你只看得见他(她)穿的是否长裤,而无法确定他(她)的性别),你能够推断出他(她)是男生的概率是多大吗?
一些认知科学的研究表明(《决策与判断》以及《》第12章:小孩也可以解决贝叶斯问题),我们对形式化的贝叶斯问题不擅长,但对于以频率形式呈现的等价问题却很擅长。在这里,我们不妨把问题重新叙述成:你在校园里面,遇到了 N 个穿长裤的人(仍然假设你无法直接观察到他们的性别),问这 N 个人里面有多少个女生多少个男生。
你说,这还不简单:算出学校里面有多少穿长裤的,然后在这些人里面再算出有多少女生,不就行了?
我们来算一算:假设学校里面人的总数是 U 个。60% 的男生都穿长裤,于是我们得到了 U * P(Boy) * P(Pants|Boy) 个穿长裤的(男生)(其中 P(Boy) 是男生的概率 = 60%,这里可以简单的理解为男生的比例;P(Pants|Boy) 是条件概率,即在 Boy 这个条件下穿长裤的概率是多大,这里是 100% ,因为所有男生都穿长裤)。40% 的女生里面又有一半(50%)是穿长裤的,于是我们又得到了 U * P(Girl) * P(Pants|Girl) 个穿长裤的(女生)。加起来一共是 U * P(Boy) * P(Pants|Boy) + U * P(Girl) * P(Pants|Girl) 个穿长裤的,其中有 U * P(Girl) * P(Pants|Girl) 个女生。两者一比就是你要求的答案。
下面我们把这个答案形式化一下:我们要求的是 P(Girl|Pants) (穿长裤的人里面有多少女生),我们计算的结果是 U * P(Girl) * P(Pants|Girl) / [U * P(Boy) * P(Pants|Boy) + U * P(Girl) * P(Pants|Girl)] 。容易发现这里校园内人的总数是无关的,可以消去。于是得到
P(Girl|Pants) = P(Girl) * P(Pants|Girl) / [P(Boy) * P(Pants|Boy) + P(Girl) * P(Pants|Girl)]
注意,如果把上式收缩起来,分母其实就是 P(Pants) ,分子其实就是 P(Pants, Girl) 。而这个比例很自然地就读作:在穿长裤的人( P(Pants) )里面有多少(穿长裤)的女孩( P(Pants, Girl) )。
上式中的 Pants 和 Boy/Girl 可以指代一切东西,所以其一般形式就是:
P(B|A) = P(A|B) * P(B) / [P(A|B) * P(B) + P(A|~B) * P(~B) ]
收缩起来就是:
P(B|A) = P(AB) / P(A)
其实这个就等于:
P(B|A) * P(A) = P(AB)
难怪拉普拉斯说概率论只是把常识用数学公式表达了出来。
然而,后面我们会逐渐发现,看似这么平凡的贝叶斯公式,背后却隐含着非常深刻的原理。